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The problem of the transverse bending deformations of a heavily loaded, thin, middle layer of material in a three-layer, linearly 
elastic medium is considered. Special versions of the theory of perturbations are developed to analyse the two-dimensional dynamics 
of the layers. As a result of "joining" them, a quasi-one-dimensional model is constructed which describes the evolution of the 
bendings of the middle layer close to the threshold of its stability. The possibility of the formation of "transverse corrugation" 
solitons which precede the inelastic deformation of the middle layer, is established. The condition for the existence of solitons 
are investigated as a function of the external stress, the thickness of the middle layer and the material parameters of the medium. 
© 2005 Elsevier Ltd. All rights reserved. 

Undulating deformations of the individual layers of a material are observed experimentally for different 
methods of deforming sample [1]. Obviously, transverse corrugation accompanies the most heavily 
loaded layers of a medium with a restraining effect of the neighbouring layers, which are weakly loaded 
and therefore stable layers. In order to reveal the special features of this mechanism, we will consider 
the dynamics of a non-linearly elastic layer of material in the form of a plate, constricted by two half- 
spaces with smaller moduli of elasticity. The local bendings of the plate are assumed to be comparable 
with its thickness. The theory of finite deformation [2-4] is therefore used. 

The Murnaghan theory of finite deformations is attractive due to the fact that, in this theory, the 
total non-linearly elastic energy of a system is chosen in the form of a series over all invariants of the 
Lagrangian strain tensor which are compatible with the symmetry of the medium. At the same time, 
more up-to-date versions of the non-linear theory of elasticity to simplify the problem are limited by 
a certain finite set of invariants, using additional geometrical hypotheses as a criterion for selecting them, 
the validity of which is difficult to estimate quantitatively. In the final analysis, each new "qualitative" 
choice of invariants must be tested on the solutions of actual dynamical problems. 

A version of the reductive theory of perturbations is developed below. The advantage of this version 
is the fact that it enables one to pick out the main interactions, which reflect the dynamic symmetry of 
the problem under consideration, from the total non-linearly elastic energy of the system without prior 
hypotheses. The proposed procedure automatically leads to a reduction in the number of phenomeno- 
logical constants in the initial expansion of the non-linearly elastic energy of the system, since these 
constants are confined by the conditions of self-consistency into a small number of parameters which 
will also be the experimentally observed effective moduli of elasticity of the layered medium. 

The initial (3 + 1)-dimensional equations of the non-linear theory of elasticity are exceedingly complex 
to analyse. A constructive solution of the problem is possible by constructing simplified equations which 
correctly take account of the main features of the problem and, at the same time, can be solved exactly. 
The transverse bendings of a plate induce deformations in the underlying materials. The effects of the 
non-local counter effect of the substrata on the plate makes a theoretical description of its dynamics 
a lot more difficult. The problem is simplified close to the threshold of instability of the plate using 
linear theory. In this domain, it is possible to restrict the treatment to the slow space-time evolution 
of the linear mode which is responsible for the corrugation of the plate. Due to the instability of the 
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linear mode, the non-linear properties of the medium manifest themselves and start to play a decisive 
role. The effects of non-linearity and dispersion limit the growth in the amplitude of the displacements 
and they open up the possibility of the formation of long-lived non-linear perturbations and structures 
in the plate. 

The domain of characteristic space-time scales and external loads, in which an investigation of the 
corrugation of the plate using the simplified model is possible, is separated out. The boundary conditions 
for a three-layer medium, which correspondent to slippage of the middle layer past the supporting layers, 
are set up. The simplified model of the quasi-one-dimensional dynamics of the bendings of a heavily 
loaded layer of material is derived from the complete system of equations of the non-linear theory of 
elasticity, including all interactions which are compatible with the symmetry of the medium, with a 
controlled accuracy with respect to the small parameters, which reflect the magnitude of the external 
stress, the space-time response of the medium to external actions in the domain of characteristic scales 
which is being considered, as well as the geometrical and physical non-linearity of the material. 

When constructing the model, a non-trivial, non-linear boundary-value problem is solved, in which 
the shape of the surface of the heavily loaded layer of the medium is not known in advance and is found 
in the process of solving the problem. We also mention that the proposed approach reduces the study 
of the real, non-unidimensional dynamics of a layered medium to an analysis of the solutions of the 
effective one-dimensional equations. The special features of the self-localized corrugation of the layer 
of the medium are determined as a result of the dispersion balance, which has a geometrical origin and 
depends on the thickness of the layer and the boundary conditions on its surface, the non-linear 
interaction of close unstable modes of deformation and, also, non-local interaction between the layers 
of the medium. 

So far as we are aware, the dynamics of such deformations of a material have not been investigated, 
although self-localized, non-linearly elastic bendings of the individual layers of a medium leads to stress 
concentrators and, consequently, cause subsequent plastic flow of the material. 

The possibility, in principle, of an analytical description of long-lived, spatially-localized, non-linearly 
elastic perturbations and of structures close to the thresholds of instability of multilayer media is 
illustrated. Solitons of the transverse corrugation of a layered medium, which precede the inelastic 
deformation of a material, are predicted and investigated on the basis of the model constructed. 

Note that the model equations will be suitable for investigating the evolution of the shape of a heavily 
loaded layer and after it has lost stability, while the deformations remain non-linearly elastic and 
comparatively small. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M .  B A S I C  R E L A T I O N S  

Consider a plate of thickness d, constrained by two non-linearly elastic half-spaces, one of which is located 
above the plate (x3 >- d/2) and the other below the plate (X 3 ~ -d/2). Suppose x~(Yck) are the coordinates 
of a point mass of the plate (one of the supports) prior to deformation, Xk = xk + uk(x, t) (J~k = 
2k + v~(,~, t)) are the coordinates of the same point after deformation (the Latin subscripts take the 
values 1, 2, 3, unless otherwise stated), and u(x, t) and v(~, t) are displacement vectors. 

In the theory of finite deformations [2-4], the elastic energy of a medium is described in the form 
of an expansion in the invariants of the Lagrange strain tensor 

1 1 
1]i k = ~[OiU k "k- akU i + OiUmOkUml, ~ik  = ~[Oil )k  q- Okl)i + Oil)rnOkl)ml (1.1) 

Suppose the material of the layers is isotropic. We take as independent invariants 

2 
I l = r l . ,  12 = qnm, I3 = rlnmrlmkrlkn 

We shall further denote the compatible physical quantities for the plate and the other layers using the 
same letters. We shall place a small concave arc (~) over quantities which refer to the supports. When 
this does not give rise to any misunderstandings, we shall only talk about the plate. 

We represent the energy of the non-linearly elastic plate in the form [2-4] 

A kpql l I 21f133 (1.2) w= i, x, ,__ 2 £ 
Vo n = 2 ( kpq} = n 
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where ~) is the energy referred to unit volume of the plate prior to deformation. The expression 
~,<~pq> = ~ denotes that the term for which k + 2p + 3q = n (n  >_ 2) are summed, and integration is carried 
out over the volume V0 of the plate prior to deformation. We assume thatA@q are comparable in order 
of magnitude. 

The dynamic equations for the plate have the form [2-4] 

2 
-- PO~t U i -t- OsPis = 0 (1.3) 

where 

2 ,  O• + OkUi?~ (1.4) 
Pis - O[OsUi ] = ~ i s  Oqks 

and 90 = const is the density of the medium in the undeformed state. 
The tensor Pij is asymmetrical in the indices i , j .  At the same time it is connected by a simple relation 

with the symmetrical stress tensor of the undeformed medium [2] 

[" IlOxll-]-I O X j  [- Ilo~Xll']-I O X  i 
Tij = Ldet ~x x J Pik-~x k = Ldet~x x J P j k ~ x  k (1.5) 

For the subsequent analysis, it is convenient to introduce dimensionless variables. Suppose l is the 

characteristic scale of the deformations of the plate in the xlOx2 plane, and a and "cch = I/~/g/P0 are the 
characteristic amplitude and time of the deformations (g is the shear modulus of the plate). We define 
two parameters el = a/l and e2 = d/l which reflect the order of smallness of the amplitudes of the 
displacements and the thickness of the plate. In the dynamic equations of the plate, we change to the 
dimensionless variables 

~ = Xa/I, q = x3/d,  x = t/"Cch, u i = afii; ~ = 1, 2 

They then take the form 

2 -  2 -  
~IEillE20xU ~ -- E2013Po~13 + 011P~3 , ~lEil~i2~,ctt 3 = ~2O~P3fi + 0nP33; ~,  [~ : 1, 2;  Ou = O/0~,u (1.6) 

We will now consider the domain of strong bending deformations of the plate, where the estimate 
e I - e 2 (a ~ d) holds. 

Suppose the support material has smaller moduli of elasticity compared with the material of the plate: 
3 ext ~Z[kpq/Akp q = O(E1). An external stress Tl l ,  which is uniform at infinity, is applied only to the plate. Then 

= 

The problem is simplified when there are no external loads of the order of e~[5].1" 
We will describe the deformations of the supports with other dimensionless variables: 

{k = 2 J l ,  ~ = t/Zch, V i = aT)i, i, k = 1, 2, 3 

In these dimensionless variables, the equations of the non-linear theory of elasticity for the supports 
have the form 

2 -  
g~oelOTvi = Okfiik; )'o = gPo/(~tPo) = 0 (1) ,  Oi = O / ~ i  (1.7) 

The domain of physical parameters of the problem, in which the non-linear dynamics of the plate 
can be studied within the framework of the simplified model, is separated out by the conditions which 
have been enumerated [5]. We next consider the case when the displacement fields of the three-layer 
medium are independent of the coordinate x2(22) and the components of the displacements u2 and a) 2 

tSee also: KISELEV, V. V. and DOLGIKH, D. V., An effective model of the two-dimensional non-linearly elastic dynamics of 
a thin plate. Preprint No. 26/50(02). Ekaterinburg, IFM UrO Ross. Akad. Nauk, 2001. 
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are equal to zero. With the aim of constructing the model, we shall seek a solution of the dynamic 
equations of the three-layer medium in the form 

= ~(~)(~ , U3 ~(0)():3 ~1, I;) -I- £ 3 ~1 T~, $), 
n=2 

(1.8) 
1)i Z .-(n),~ = °i tc~l,~3,"c), i = 1 ,3  

n=0 

n=l 

The superscripts indicate the general order of the terms with respect to the parameters el and 
E! 2 ( e  I - -  Ei2). Note that the fields t~ °) and ~}0) describe the local deformations of a medium with a 
characteristic scale l: Of)~°)/O~k- (0) = O(1),. Ot;~°)/0~l = O(1) and, also, their slow space-nine" modulation, 
while the displacement u 1 only describes the uniform planar stressed state of the plate and its slow 
modulations for which 0a~°)/O~l = O(el). These assertions will be refined below in Section 3 by 
introducing slow variables and, in particular, the separation of the term a~0) from the correction/~1) 
will be made specific. 

The expansions of the tensors Pij and Pij 

b!. ~)" i , j  = 1, 3 (1.9) v,j = E-,,P!e), i,,j = E - , , ,  
n=l n=l  

correspond to the solution of the form (1.8), after they have been substituted into Eqs (1.6) and (1.7), 
a chain of perturbation-theory equations is obtained. 

Analysis shows that, under the conditions formulate above, we can confine ourselves to a finite number 
of terms in representation (1.2) for the non-linearly elastic energy of the medium. We must retain the 
following terms in the energy density of the plate 

k 2 A C3 
d O = -~11 + g l  2 + -~I 3 + B i l l  2 + -~I 1 (1.10) 

where ~, g, a and B, are the moduli of elasticity of the plate [3]. 
Since the supports have smaller moduli of elasticity, it is necessary to retain more terms in the energy 

of the supports to "join" the stresses along the interfaces of the media: 

#:2[  b) ~4 
/ ~  Bili2+~131+~122+ 6 i l i3  "~/1 2 1211 * = ~I21 + ~I 2 + 513 + + + (1.11) 

The moduli of elasticity/),/~, ~/, N, are introduced so that comparatively simple coefficients are obtained 
in the final formulae. 

2. T H E  C O N D I T I O N  F O R  T H E  S L I P P A G E  OF T H E  M I D D L E  L A Y E R  

We will now formulate the boundary conditions corresponding to slippage of the plate past the supports. 
On the touching surfaces of the plate and the supports, the normal components of the displacements 

of the medium must be continuous. In the first orders of perturbation theory, the boundary conditions 

= ~(k) + 
fi~k) n =+t/2 3 {~=0' k = 0,2; ~ ' )~3=o  = 0 (2.1) 

correspond to this requirement, where {~ = {3 7- d/(21). 
The normal to the deformed surface of the plate is defined by the relation [2] 

m i Ox s 
Ni = V~[' rnj = ~ j j n s ;  i, j = 1,3  

where n = (0, 0, 1) is the vector of the normal to the undeformed surface of the plate. An expression 
for the normal in terms of the displacement fields, apart from terms of the order of e 2, is next required, 
namely 
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2 
NI _el01fi~o) 2 E 1 . - ~  - ( 0 ) . ,  2 . 2 = + o ( e l ) ,  N 3 = 1 - ~ t a l u  3 ) .O(e l )  (2.2) 

As a consequence of the slippage of the plate, the shear stresses in the deformed surfaces of the plate 
and the supports must vanish: 

Nie i sTskN k = O, N i e i s T s k N  k = 0 

where eij is the antisymmetric unit tensor (e13 -- 1). The expansion of these relations in the parameters 
el, e2 (see formulae (1.5), (1.9) and (2.2)) gives the boundary conditions for the equations of perturbation 
theory 

p (4 )  = 0 ,  
13 l 1 = +-1/2 

5 1) = O, 

p(k) + • 0 fi(O)p(k-1)ll 
--13 1 1 3 33 1111 = ±1/2 -- O, k = 5, 6 

[/5(13)+ -, _(o)a(,- ¢~= = O, n = 2,3 elalU3 /-'33 1)] 0 
(2.3) 

Note that, though the shear stresses at the touching surfaces of the plate and the supports vanish, 
the tangential components of the Piola-Kirchhoff tensors t°13 and P13 do not vanish. 

The requirement that the normal stresses should be continuous on the touching surfaces of the plate 
and the supports 

NiTi jN j = NiTi jN  i 

gives the following boundary conditions for the equations of perturbation theory 

p ( 4 )  ~1 =±1/2 19(1) P~g) n = r t3(2) ElO1 -':(0)~(1)~ ~ 3 = 0  33 = --33 ~3 = O' =-+1/2 I---33 -- 1)1 /-'33 ] 

p(6) ,,~(3) --, - ( 0 ) . ~ ( 2 )  ,~(1),---, - ( 1 )  .--, 1)]}1 
33 "q=+l/2  ----- { / ' 3 3  - -~ ! lO1Ol  /"33 + e l r 3 3 t a l U l  -alb(l ~ 3 = 0  

(2.4) 

In considering relations containing the components of P~.~) and P~.~), it is necessary to take account 
of the different order of magnitude of the moduli of elasticity of thJplate and the supports. 

The boundary conditions on the edges of the plate characterize the counter effect on the plate of 
the deformations in the supports. In particular, from conditions (2.4), this effect takes account of the 
change in the normal stresses as a consequence of the different compressibility of the plate and support 
materials. 

In formulae (2.3) and (2.4), due to the small moduli of elasticity of the supports, the link between 
the stresses on the surface of the plate and the stresses in the supports manifested itself starting from 
the fourth order of perturbation theory for the plate. The stresses on the developed surface of the plate 
vanish in the lower orders of perturbation theory. This requirement is equivalent to the conditions 

P(n) = O, n = 1,2,3 (2.5) i3 ~l = -+1/2 

The static deformations of the medium at infinity must ensure the equilibrium of the supports which 
have been compressed on account of the deformation of the plate. The dynamic deformations of the 
supports vanish at infinity. 

3. THE R E D U C T I V E  T H E O R Y  OF P E R T U R B A T I O N S  

The non-linear dynamics of the plate are determined not only by the local interactions of its own 
deformations but, also, by the "indirect" interaction of the deformations of the plate in terms of the 
displacements of the supports. Even in the simplest case of a quasi-one-dimensional corrugation of a 
plate, the displacements of the supports are two-dimensional. The indirect interactions are therefore 
non-local. In the case of the quasi-one-dimensional dynamics of a plate, perturbation theory (1.8) gives, 
generally speaking, non-linear, integrodifferential equations. The problem is simplified and reduces to 
an "almost local" problem when the plate experiences undulating corrugation close to that which 
corresponds to a neutral-stable linear mode. 



952 D.V. Dolgikh and V. V. Kiselev 

We shall consider this case. According to linear theory, close to the threshold of instability of the 
plate, it is necessary to specify the solution (1.8) by introducing the dependence on the slow variables 
X and T 

Ul = u(10 '0) (X,T)  + Z Z U(ln'l)(X' T, rl)exp(ikl~l) 
n = l / = - ~  

= -("' t)(X, T, q)exp( ik l{ l  ) (3.1) ~3 [~0. II(X ' T)exp(ik{l ) + c.c.] + ~ ~ u 3 
n = 2 1 = - ~  

=(n l),  .r  
T)m = ~ E ore' ta'  T,~3)exp{ikl~,), m = 1, 3 

n=  l l = - ~  

The index n characterizes the order of the terms with respect to the parameters q ,  t52 (151 ~ E2), and 
k is the wave number of the neutral-stable linear mode which is formed in the case of the critical stress 
Try. The values o fk  and T ~  are found when solving the problem. Further analysis shows that the estimate 
T~ln/g = O(1512) holds. \ 

' r l in  In the case of external stresses T ~  t close to ~ n ,  the non-linear dynamics of the plate is determined 
by the unstable modes, the wave numbers of which lie in a small neighbourhood of the critical wave 
number k. The radius of the neighbourhood depends on the extent to which the stress T~  t differs from 

lm hn 4 T~il. We will henceforth assume that (Tll - Tl l) /g = O(151), and then the slow variables: X = 151~1, 
T = @c, which describe the modulations of the fundamental harmonic ~exp(ik~l) as a result of its 
interaction with the close unstable modes, are defined in terms of the parameter 15> In the final analysis, 
the validity of the scale expansion is justified by the self-consistency of the results. 

The versions of perturbation theory are considered in accordance with relations (3.1). One of them 
is for the description of the non-linear dynamics of the plate and the other is for the description of the 
non-linear dynamics of the supports. As a result of their "joining", an effective, quasi-one-dimensional 
model of the evolution of the envelop of the transverse bendings of the plate will be constructed. 

Perturbation theory for the plate. The chosen form of the solution (3.1) leads to the following 
representations for the components of the tensors qw and P~p 

rlsp E E (n,l) . (n'l) exp(ikl~l) ( 3 . 2 )  = q,e exp(tk/~l) '  Psp = ~_~ ~,  Pse 
n = l / = - ~  n=  l l = - ~  

We find the relation between the coefficients TI~' l) and R!~' t) by substituting expression (3.1) and (3.2) 
into relations (1.1). Since the initial fields are real, the functions t~! ~' O, etc. satisfy the conditions 

U i ~- 

The components tT! n' 0, n!. ~, 0, p}.~, z) depend on the variables 11, X and T. Substituting expressions (3.2) 
. ~/ ~/ . 

into relations (1.6), (2.1), (2.3)-(2.5) and equating terms of the first order of smallness for each of the 
independent harmonics, we obtain boundary-value problems in the variable q. 

In the first orders of perturbation theory, we have boundary-value problems with trivial solutions: 
p}~, l) ___ 0 (n = 1, 2) and P~3' l) _ 0 (k = 2, 3). The first of these is equivalent to the condition rl~' 0 = 0 
from which it firstly, follows that the coefficients q~'~' 0, in fact, are not equal to zero starting from n = 
3. If the condition q~' 0 = 0 (n = 1, 2) is rewritten in terms of the displacements, equations for calculating 
tho ~ola~ ~(n,1) are obtained The functions ~t! n' 0 (n = 1 2~ with l = 0, 2, 3, turn out to be independent 
of 11. We shall subsequently_ _ indicate functions which are independent of.11 with a tilde:. 1 *t]~ n' ') = fi~ ~' ') 
(n = 1, 2; l = 0, 2, 3, ...). The coefficients ~ "  1) (r/ = 1, 2) are expressed m terms of u~ °' ) 

-(2,1)  Ul-(I' 1) ----- _152ikq~t~o, 1) + ~{1, 1), fi(12, 1) = _ 151eiq~)Xfi~O, 1) + Ul (3.3) 

-(n 1) where u 1 ' (n = 1, 2) are arbitrary functions which arise during integration; they are determined 
by the following orders of perturbation theory. It is found that fi~n, i) = 0 and (n = 1, 2). 
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From the relations 
19(n,l) (~  + ~  . (n.l) ( n , l ) _ o  ' 

= zg)Ti33 + kTi11 n = 2, 3 (3.4) "33 = 

we find the connection between Ti ~]' l) and TI~' 0 which is useful in the subsequent calculations and leads 
to the representation 

(n,t) ~ . (n,l) 
ell  = ()L'+Zg)Till , n = 2,3 

Henceforth, the effective modulus of elasticity of planar deformation 

9~' = 2)qM(£ + 2g) 

is introduced which characterizes the stresses (in the linear approximation, see [5]) which arise in the 
middle layer when an element of its area is changed. 

We will now explain the general scheme for the calculations by taking as an example the boundary- 
value problem 

~) o(3,1) (2 l) p(133 ,l) 71 O, I = O, 1, 2, (3.5) "q* 13 +~2iklPll" = O; =_+112 = "'" 

We integrate Eq. (3.5) over the thickness of the plate. We obtain the condition for it to be solvable 

1/2 1/2 

; FII~(2'I)"I~uq = (£ '+ 21/) ; (2"t)a*" 1111 u q  = O, 
-1/2 -1/2 

1 = 1 , 2  . . . .  

from which we find the relation between the functions 

fi~l, 1) 0 ,  U(11'2) -(1,2) %ik (0 -(1,0 = = Ua - ~ (fi3'1))2, Ul = 0, l = 3,4 . . . .  

which have already been introduced. 
The constraints (3.6) mean that only two of the coefficients TIll' 0 (l > 0) 

i](2,0) 2.- ,  -(0,0) 12 ) (2,0) (2,1) .2  ~(0 l) 11 6-1(axlgl + k2 ~0, 1) = _=_ell , Till = ~1~2 K TiU 3 '  

(3.6) 

(3.7) 

do not vanish. 
(2, 0) characterizes the longitudinal deformation of the plate, which is homogeneous The quantity q l  

throughout its thickness. 
When l = 0, 1, 2, . . . ,  the solutions of problem (3.5) have the form 

2 . . 3~ (0 ,1 ) (  2 1"~ o(3,l) 
P(13'1) = - (Z '+2g)el%ttc  u3 ~TI - ~ ) ,  -13 = O, l = 0,2,3 . . . .  (3.8) 

The constraints on the quantities TI~2, 0 which have been established (see (3.7)) enable us to turn to 
Eqs (3.4) and solve them for the fiel~ls tT~ 2' 0. As a result of integrating the equations obtained, the 
corrections t2~ 2' 0 are calculated 

a_(2 ,0 )  )~' 6(2,0)~ a - ( 2  o) 
a u, 11 

_ ( 2 ,  1) _ ~,' 

_(2.2) _ e l~2k2.~(0 ,1)_2  fi~2,2) 
u3 2 tu3 ) TI + 

(3.9) 

_(2, l) ~2 ,  
u3 = O, 1 = 3, 4 , . . .  

where t~ 2' 0 (l = 0, 1 . . . .  ) are functions which arise in the integration. 
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In order to progress further, we note that, on the one hand, the components p~3, l) have already been 
found in (3.8) and, on the other, they can be expressed in terms of the deformations 

(3,/) P,3 = 2"q~; '0 (3.10) 

,,(3, 0 but also the longitudinal displacements tT~ 3' 0 Not only the deformations n13 , 

~(13,0) = ~(13,0) 

[(1 ~ '  " ] 2 _  !(1 ~'' )']-(0, 1) I---(2, 1) (1" ~"'~ (2,0)~(0, 1)] ~?, 1) u(13'l)=-e~ik3 + 4 g )  3 4~ +2-grl)J u3 +e2ikrl u3 + +~-~)ell u3 + 

_(3, 2) ~.' 2..3 2r -(0, 1),2 2e2ikl] fi~2, 2) + fi(13, 2 ) /'/1 = ~"~!lEZ//~ I] [U3 I -- 

(3.11) 

O~Ft(13'i)+~2ikILt~ 2"l) = O, l = 3 ,4 . . .  

can be found from Eqs (3.10). 
The arbitrary functions fi~3, t) appear again after integrating relations (3.10). 
The overall computational scheme will be self-consistent, if the functions, which were arbitrary in 

the first orders of perturbation theory, are, in the final analysis, united into a block such that a closed 
system of equations is obtained which determines the evolution of the first of them. This system of 
equations will also be an effective model of the non-linear dynamics of the plate. The procedure is closed 
only if the slow variables are correctly chosen. The relations between the functions arise from the 
conditions for the boundary-value problems of perturbation theory to be solvable. It is noteworthy that 
the proposed perturbation theory satisfies the criterion which has been formulated. The necessary 
calculations are simple but tedious and are carried out using the scheme which has already been 
described. We will enumerate the key aspects. 

For the problem 

~ O(4, l) (3 l) -, _(2. t) 'l) n = 0, l = 0, 1, 2 . . . .  (3.12) q'13 + e 2 i k l P l l  ' + eleZOXrll = 0; p(143 = +1/2 

the conditions of solvability not only give algebraic relations between the functions which have arisen 
during the integrations but, also, the equation 

3 ..(2,0) = O, (2.0) (~, (2,0) XoII GI] = + 2~t)ell (3.13) 

Since the external stress at infinity [T~t] (2' 0) = const, we conclude from relations (1.5) and (3.13) that 

. 2r-, ~Co.o) + k2lfi~0.1)2] = [T~llt](2,0) const (3.14) _(2,0) (32 + z g ) ~ l t O x U  l 011 = = 

/9(4, l) from the solution Using the constraints which have been found, we calculate the components -a3 
of problem (3.12). Only p~4,1) _-- _ie13x3kp~3, 1) is found not to be equal to zero. This information about 
p~,  1) is sufficient to construct an effective model, It is not possible to calculate the corrections fi~4, 0 
since they do occur in the equations for the bending of the plate. The fields ~3, 0 also do not appear 
in the effective equations and it is therefore possible to avoid the integration of system (3.4) when 
n ~ 3. 

The reactions of the supports to the bending of the plate manifest themselves starting from the fourth 
order of perturbation theory. 

We will illustrate this, taking the following boundary-value problem as an example 

(4 t) 7,(1, t) (3.15) e2iklp~31,1)+ Oqp~4,/) = O; P33' n=_+l/2 = r33 {~=0 

-(1 0 Stress P33 1~3 = 0, whxch are due to deformations of the supports, act on the plate surfaces rl = -+ 1/2. 
The version of perturbation theory (for the plate and for the supports) are therefore interrelated. The 
success of the method is due to the fact that the boundary-value problems for the supports are solved 
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using displacements and deformations which have already been calculated on the plate surfaces 1] --- 
_+ 1/2. In order not to interrupt the analysis of the dynamics of the plate, we will consider the perturbation 
theory for the supports in the following section, and it is here that we present the results of the solution 
of the boundary-value problems for the supports. Only the component P~' 0 is non-zero on the plate 
boundary and it is defined in terms of the transverse displacements of the plate ~0, 1). 

P33~(1 1) {;+ = o = q:~ (2'+2('t)el[klg~°'l)(X'T)' ~ ' -  £2~+ 2~t (3.16) 

Note also that, when n _> 3, the fields P~]' 0 and P~'  0 are not equal. However, according to relations 
(1.4), they are related to one another so that it is always possible to find P~'  0 using the known 
components P~3'O. In particular, using relations (3.8), it can be shown that, when l > 0, two of the functions 
p(3, l) 

31 
, (3 ,1)  ~ 2. 3-(0,1)(  2 1 ) .  -(0 1)[T~llt](2,0) 

31 = -- (~" + 2g)~l~!2lk  /A3 ]] - g + e l t kU3 '  
(3.17) 

2 • 3 ~(0 --31/9(3'2) = (~ '  + 2b t )e le2 tk  [u3 '1)]21] 

are non-zero. 
On integrating Eq. (3.15) with I = 1 over the thickness of the plate, we obtain the condition for it to 

be solvable 

~xt . (2  0) ~ ' +  2 ~  (~2k)2()L, + 
[T~II |  ' - ei[kl 12 " -  2g) (3.18) 

Relation (3.18) connects the external compressive stress [T~t] (2' 0) with the wave vector k of the neutral 
stable linear mode, which is responsible for the corrugation of the plate. From the condition for 

ext (2 0) hn (2 0) an extremum of the function [Tll ] ' (k), we find the minimum stress Tll and strain %1' , starting 
from which corrugation of the plate is observed, and the value of the wave number k0 corresponding 
to it. 

Tlin ~"+  2gr v ~2 ~.' 2g (3.19) 1, = ~ t%"0, = (~ '+ 21-t)e(,] '°), = 6~  + 
+ 2 g  

The solutions of the fifth-order equations of perturbation theory give the fields P J{' 0 and p(5; 0. The 
5 1 ~ oJ ( ) (5 1) componentP31' is expressed in terms of P13' and the other known fields using relation (1.4). In order 

to construct a model of the bending of the plate, P~ '  1) is required, though not the function itself but 
its mean value. We now present the final result 

1/2 

I P~'l)(rl)drl = elik°fi~°'l)~ (a,o) l~11 + (%k0)4p] - 
-1/2 

(4) 
2~' + 2~t 2..3-(2 1) )L' + 2g 3 2.. -,2 -(0 1) gv -(0, 1) 2fi(0,3 1) 

"~ E1E2IKoH 3 ' "~ E1E2IKoOxU 3 ' + ¢ : 1 ~  0 bl3 

where 

p = ~[(1 + ~ - ~ ) k , ~ - ~ , ) +  3a16 a2] 

al and a2 are the effective moduli of elasticity of the plate, introduced earlier [5], where 

[ 3a l + a  2 = ( A + 2 B )  1 -  + ( B + C )  1 2gJ 

The parameter 
3 2 

, , , , 0 ,  ,( 3,  g~4) 
- F x'-5 t 3 a2] 

(3.20) 
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(4 0) characterizes the interaction of the transverse modes in the bulk of the plate. The quantity ~Yla' = 
(4 o) of the longitudinal strain tensor q~4, 0), which as @, + 2g)~4, o) is defined in terms of the part ql '  

homogeneous throughout the thickness of the plate and is a combination of functions which were 
arbitrary in the first orders of perturbation theory. In order to construct an effective model, there is 
no need to represent _(4, o) in terms of the displacement fields, since the conditions for the sixth-order %a 

(4 o) riO, o) and equations of perturbation theory to be solvable give a closed system for calculating %1' , 
t2~0, 0). 

Two of the sixth-order equations of perturbation theory are used to construct the model of the bending 
of the plate 

5 2 - (0 ,0 )  71 lo (6 '0) .~ n (4 ,0)  
~ £ 2 E I ~ T U !  = ~rl--13 + e-l~-2oXrl! 

5--,2-(0, 1) .~ D(6, 1) . (5, 1) -~ ~(4, 1) (3.21) 
g%EIOTU3 = '-'11--33 + ~-2tkoP31 + ~162°xF31  

The functions -13P(6' 0) and P~'  1) are unknown in Eqs (3.21). 
The boundary condition 

(6,0) ,~ = 0 (3.22) P l 3  = +_1/2 

follows from conditions (2.3). 
The procedure for calculating the boundary values p~6, 1) is described in the following section. We 

present the result 

e~6,1) n=+_m = 

= +{ k'+]2. 2ge'e2K°[ u33~4[--(2' 1)(1 +~"~-~j,--~--j)(e2k°)2fi(°'31)] . ~ u 3 , .  gs(4)£ 1£2-(0 1)12fi~o, ,) } (3.23) 

The parameter g~4) is an integral characteristic of a three-layer medium. It is associated with the surface 
forces acting on the plate as viewed from the supports, which lead to an indirect interaction of the 
transverse modes in the plate. 

The conditions for boundary-value problems (3.21)-(3.23) to be solvable are: 

4-~2-(0,0)  ~ . (4,0) 2 - (0 ,1 )  2 
gelOTU 1 =- OX{OI1 + (%%) q U s [ } (3.24) 

2 
4-~2-(0, 1) - 2  (4,0)-(0,  1) [- (~L' + 2g) -] 4 . 6 - ( 0 ,  1) 

gelOTU3 = -- R01~ll U3 + --[_P 48g J %~°u3 + 

£' + 2g.  . . 2 . 2  -(0, 1) + (4) -(0,  1) 2 ~ 0 ,  1) 
+ - ~ t e l e 2 t % )  axu3 gsv u3 (3.25) 

o[ ( £"~(2 L') 3a l+a21 (4) • (4) (4) 
q = k l + ~ - g ) ~ p - - ~  + 6 , gsv gs +gv 

(4, /~0, 1) Equations (3.14), (3.24) and (3.25) from a closed system for the calculating the fields %1 0), 
t~0, 0). Its solutions correspond to different initial conditions and different methods of loading the plate 
when IX[ ~ oo. 

When the deformation of the plate is homogeneous at infinity, it is necessary to put 

(4.0) IXl-+~ = [T~'Xt](4) F 1 + 777-3ai+ a2---2] lllllr-lin'2 
Oil 11 - L2-g ()v + 21-t) (3.26) 

-(0.1) IXt -, -(0,0) U3 --+~ = OTUl Ix l -+~  = 0 

In all, it is simpler to obtain this expression for ,~(4, o) val I lSl -+ = by the method used in [2]. 

Perturbation theory for the supports. Other slow coordinates are used to calculate the displacements 9i, 
which better reflect the space-time response of the semi-infinite supports to the bending of the plate. 
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The calculation of the components a31 ") in the expansion (1.8) reduces to the recurrent solution of 
quasistatic boundary-value problems of the linear theory of elasticity, in which the slow time occurs as 
a parameter. In this case, the equations defining the fields 5~ °) are homogeneous and the equations for 
calculating the functions ~I n) with n > 1 contain bulk forces which are induced by the displacements 
found in the preceding orders of perturbation theory. Specification of the form of solution (3.1), which 
involves separating out the resonance mode and introducing the slow coordinate X, enables one to avoid 
the appearance of complex integrals in the construction of the simplified model. The boundary-value 
problems for calculating the components ~n, 0 and l ~: 0 are Fourier transforms with respect to the 
variable ~1 of linear boundary-value problems with sources. 

When n = 0, l ___ 0, the displacements ~I "' t) with l = 1 are not equal to zero: 

v(O, 1) - (o  1) = U 3 ' S 

S = 
exp(-Lk_ol [isign~signko[T- 1 -2  z + 

1 +2ko  l ' 

(3.27) 

The boundary values (3.16), which were used in the preceding section, are calculated using relations 
(3.27). 

We will illustrate the general scheme of integrations, taking as an example the second-order equations 
of perturbation theory 

. .  , ,~(2,/)  ~ l a X b l ~ , l ) +  u3-- i3  = 0 IKoll"il + ,.~ ~(2,  l) (3.28) 

The boundary conditions for these equations are determined from conditions (2.1) and (2.3) 

b(1,1) + ~(2,1) 1 
3 G = o  = O; -13 1~3=0 = O, l ~ 2  

" + 2~t 2. -(O, 1)) 2 (3.29) 
--13/3(2'2)11{~ = 0 = +~'' 2 %tk°lk°l(u3 

Problem (3.28), (3.29) has non-zero solutions only for v O' 0 when Ill < 2. 
When l = 0, system (3.28) reduces to the equations 33P}~' 0) = 0, and it follows from these that 

(z 0) Pi3' = const. The constants of integration are assumed to be zero in order to satisfy conditions (3.29) 
and the conditions that there are no stresses when {3 ~ - ~o. The displacements/552' 0) = 0 are calculated 
from the equations v (1' 0) 

tT+ 1) o 

+ (~/- -  1 )2(0{ 2 + 1 ) }d~3 

~(1 l'°) = 0 

+ 1 + 2(7 + ~I)[( 'Y- 1)[ko~3] + 2 ( k 0 ~ 3 )  21 + 

(3.30) 

where 

• ~ + 2/} 3/~ + 2C + , t /2  

z(o, i) = fi~o, l)exp(_]kol~3) 

For the subsequent analysis, it is useful to introduce the vectors v (n' l) = (9{n, 0, ~ ,  0) and the matrix 
operator 

(~ + ~t)i(kol)a 3 

(£ + bt)i(kol)O 3 

(~ + 2~)3 2 - ~ ( k o l )  2 
(3.31) 
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Then, when l = 1, system (3.28) can be represented in the form 

I~ i lv ( l ,  1 ) _  i~l(~koHt)~xv(O , 1) = 0 

It is easy to show that 

~(2, 1) = . v(1, 1) = _i~l~koOXV(O, 1); Pij _telOkoOXpll, 1) (3.32) 

The values of P ~  1) 1~ = 0 were used in the preceding section when analysing the dynamics of the plate. 
When l = 2, system (3.28) has the form 

• (2, 2) 
H2v(l,2)^ = ( 1 , 2 ) ;  f(L2) =---1 12tk0rtll +a~,3,~13~(2,2)111 

_ ( 2  2) I 12ik0= ]' =) + ~3J~,33 I 

where re! 2' 2) is the non-linear part of the tensor/5!2, 2) which is expressed in terms of already known ij q 
fields (rc~. 2' 2) - -  [~(0, 1)]2). The solution which satisfies conditions (3.29) and the requirement that 
v(1, 2) ~ ~ when 1~31 ~ ~ has the form 

2 .  + o, o ,211i 1+ 2 koch,, 
O3 (q( + 1) 2 U - 2 k 0 ~  II 

(3.33) 

where 

Q = ~ / 2 + 2 T - 2 - ( ] t -  1)2O~z+(7- 1)cz 1 

The function/5(32 2) and its boundary values 

+ (t -c0, 
33 ~3=0 = 2 1)2(%k0) (u 3 1))2{2Q+(T- 1)2(o~2+ 1)} 

(~,+ 

which are needed when formulating the boundary conditions in the next higher order of perturbation 
theory, are calculated from relations (3.33) and (1.4). 

In order to construct the model of the bending of the plate, it remains to calculate the boundary 
values of the function ~(3, 1) It is noteworthy that it is not obligatory to calculate the displacements - -33 • 
v(2, i) in order to do this. 

In order to find P(3~ 1) 1~ = 0, we return to the third-order equations of perturbation theory with 
l = l  

where 

I~Ilw + l ( i k 0 a  + 33 b)  = 0 (3 .34)  

1 2-,2 --,2 (0, (3,1) _(3, (3, 1) _(3,1))  T 
W = V (2' 1) + 2 E'IOkOOXv 1), a = ( ~ l l  , 11,31 1)) T, b = (~13  ,/1'33 

and rt~ 3' 1) is the non-linear part of the tensor/5!3, 1), which is expressed in terms of the fields (x~ 3' 1) _ q 
[X(0,1)]2Z(0, I)) that have already been found. 

We multiply Eq. (3.34) scalarly from the left by the vector-function p = sr~r3 = (Sl, -S3) (see relation 
(3.27)), which is the solution of the adjoint boundary-value problem (it satisfies the equation pI~IJ- = 0, 
where ~ is an operator which is the Hermitian conjugate of H1). The result is integrated over the domain 
F + = {{~- > 0} (F- = { ~  < 0}). After some simple reduction, taking account of the equality 

v(O, 1) + = o32v(O, 1) 
k0 ~ -- 0 k0 ~ = 0 = 0 

we obtain an integral representation for the boundary values of the function p~3~ 1) 
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- • 7 -  1 -(3, 
/~") ]g~=0 = -+ I [c33p "b-ik°(P" a)]d~3 +'s'gnko(y--+-l) P'3 ' ) I~=O-  

F -+ 

~'+ 2~ . -(2,1) + / 
"2 el K0 D3 ~ = O /  

(3.35) 

Fields which have already been calculated occur on the right-hand side of equality (3.35). In particular, 
(3 1) (2 1) the components  Pl~ I ~-+ - 0 are determined from conditions (2.3), and ~3' ] ~-+ - 0 are determined from 

conditions (2.1) and relations (3.9). 3 - 
In the final analysis, formula (3.23), which was used in the preceding section when analysing the 

dynamics of the plate, follows from conditions (2.4) and (3.35). The parameter  g~4) in relation (3.23) 
is determined from the equality 

(4) 
1 ~ 2g s 2 - 4(~ + ~ t ) ( T - ! ) r Q - ~ (  T -  1)2+ 271(~1[k01)3 + 

(7+ 1) t_ 

f ( 0 3 p -  b )  - iko (P  • 
+ j I ' - ( ~ ~  a ) d ~  3 

r-  + lu3 l u3 

(3.36) 

The explicit dependence ofg~ 4) on the elastic moduli  of the three-layer medium has the form 

- 2 I'ts(%lkol)3 - +40~2+133 ( 7 - 1 ) 5 +  
(Y+ 

+2{(3  + o~2(3 + 3~2)) -  [33}(7- 1)4 + 2{ 18 + Q+4¢xl + 0~2(2- Q + 20~1)- ~2}(~t- 1)3+ 

+2{35 + Q ( 7 -  20.2 + ~1) + 2o~2(1 + if.l) + ¢Xl(ll + ~ 1 ) -  2[32}('j,- 1)2+ 

+ {31 + 4Q(6 + oq) + 2%(13 + 3(~1) -6lBl } (T-  1) + 2{4Q + 3o~-61Bl }] 
J 

(3.37) 

where 

/4 / ~ + h + 2 M  F +  ~/}+ 6M+ 2hi 
[~1 ~ , + ~  [~2 ~+~£ ' ~3 ~ + ~  

4. S O L I T O N S  OF T H E  C O R R U G A T I O N  OF T H E  M I D D L E  L A Y E R  

We shall seek a solution of system (3.14), (3.24), (3.25) in the form 

lin 
2 ~X+ VTA2(~C)dX, ~(o,o) Tlz X - k o 

Ul = 2 
e I (~,'+ 2~t) 

fi~o, t) = A(X + VT)exp( i~T + DzX + i~Po ) 

where V, 1¢, £2 and % are real parameters.  From Eqs (3.14) and (3.24), we obtain 

(4.1) 

140, 2 a n  = [(%%) q + ~te4(koV) 2] (4.'2) 
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The constant of integration C (4) is determined by the boundary conditions. In particular, when the 
deformations of the plate are homogeneous at infinity, it follows from relations (3.26) that 

3al + a  2]  Tlin 2 C(4) = [ T ~ l l t ] ( 4 ) - { ~ +  ~1_'-2"~/[ 11] 

After substituting expressions (4.2) into (3.25), we find the relation between the parameters V, ~ and 
f2 

K . . . .  "2' Vcr =" + (4.3) 
Vor 2t, e I J /. 2~tJ 

and the ordinary differential equation for determining A, which admits of a first integral 

= ~A 2 + ~A 4 + c (~xA) 2 

Here, 

(4.4) 

0~ = -k0t~l, e l (  - Wcr) ] (E2k0)4 P 4 8 g  ) + "~l~,v--~rk 0) • - cr) C(4) 

[~ 4(V2 2 - 1  (4)+ 2 2 2 
= - Vcr)] tgsv (koele2)2q + ~t(elVko) } 

and c is a constant of integration. 
In the case when the boundary conditions (3.26) are homogeneous at infinity, a localized solution 

of Eq. (4.4) exists when c = 0, a > 0, [~ < 0, and it is soliton of the transverse corrugation of the plate 

a = 2,/~71~1 

cosh(~,/-~[X + VT]) (4.5) 

According to expression (4.5), there are non-zero deflections of the plate in a domain with a 
characteristic dimension of the order of ~-u2, which moves with a velocity V. When f~ = K = 0, the 
transverse displacements of the plate have the form 

~1)  ----- Acos(ko~ 1 + q~o) 

To be specific, suppose g}v 4) > 0. Then, the soliton,.(4.1), (4.5) is formed in the case of loads r~It which 
are smaller than a certain critical value (close to T ~'i'): 

2 2 

Ir"~l<lr'i"[ l -  [ ~ + ~ +  ;v+2rt_l +la ~ (v2-v:,) (4.6) 

and moves with a velocity which does not exceed Vcr(V 2 < V2r). In particular, such solitons can also be 
stationary. They are stress concentrators and, simultaneously, the forerunners of the subsequent plastic 
deformation of the material. 

When c > 0, 0 > c > -~/(21 [~l ), c~ > 0, [3 < 0, bounded solutions exist which describe, in particular, 
structures in the form of chains of corrugation solitons 

A = A+dn{A+g(X+_ VT), k}, 
2 _ A 2  2 

k2 = A+ _ 
2 , 0 > c > -211~--] (4.7) 

A+ 

A A A+ N(X  + VT), k }, 
= * [ T 4 - f  

2 
k2 _ A+ c > 0 

2 [a_12' A++ 
(4.8) 
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Here 

A_+ = J (~+D) / ID I ,  D = q/c:z2+2cl131 

We shall discuss the form of the solution (4.7) for values of the parameter k close to unity. We will 
use the representation 

dn(Y,k) = ~ ~ sech .~.--~,,(Y-2Kn) (4.9) 

where K = K(k), K' = K(k') are complete elliptic integrals of the first kind, k' = ~1 - k 2 (k' ~ 1) and 
n integers. Relation (4.9) is proved by comparing the expansions in common fractions [6] of the left- 
hand and right-hand sides of formula (4.9). The additive constant is fixed by the normalization condition: 
dn(Y = 0, k) = 1 and turns out to be zero. 

According to relations (4.7) and (4.9) when k' ~ 1, changes in the functionA are localized close to 
points with coordinates X = (2Kn/A+)'4--2-/] 61- In the neighbourhood of each of these points, in the 
domain with a characteristic dimension l0 = (2K'/(r~l+)-~-~ [, the solution of (4.1), (4.7) appears as 
a corrugation soliton. Outside these domains the deformations of the material are small. 

When ~ < 0, 13 > 0, bounded, "quasiperiodic" (4.1) solutions exist when 0 < c ___ a2/(213): 

{ ~ } A 
A = A_sn A+ (X+ VT),k k = ._2 (4.10) 

' A+ 

Here, 

A_+ = J(Io¢l-+ D)/~, D = ~2~- 2c[3 

The simplest of the solutions is obtained when c = ~2/(21] ) and this is a so-called "dark" soliton 

A = g t h ( g [ X + V T ] )  (4.11) 

An excited state of the plate with an asymptotic form of the transverse wave type 

~l) _ cos(k0~l + ~X + f~T + %), X ~ _+oo 

corresponds to the soliton of (4.1), (4.11). 
The "dark" soliton (4.11) describes the modulation of this wave. When g~4) > 0, "dark" solitons are 

formed below the threshold of stability of the plate and move with velocities Vwhich exceed I Vcr I in 
absolute value. 

5. C O N C L U S I O N  

The difficulty in the theoretical description of the non-linearly elastic dynamics of a three-layer medium 
are not solely due to the non-linearity of the material. The non-local nature of the interaction between 
the layers makes the problem significantly more difficult. In addition, it is important, in the case of a 
layered medium, to take account of the boundary conditions accurately, since they determine the 
dispersion of the medium, and this also means the conditions for the formation of soliton-like excitations. 
Long-lived, non-linearly elastic solitons are promising for the diagnostics of structurally inhomogeneous 
materials since they carry useful information both on the stressed state of a medium as well as on the 
geometrical dimensions and material parameters of its individual layers. 

The simplest case has been considered above when the external stress and the boundary conditions 
in the x]Ox2 plane lead to the quasi-one-dimensional corrugation of one of the layers of the material, 
which is the result of the interaction of the neutral-stable linear mode -exp(ik0~l) with close unstable 
modes. In the general case, it is necessary to take account of the interaction of several groups of waves 
in order to describe the bending of the layers in several directions. It is necessary to modify perturbation 
theory in the case of other boundary conditions and material parameters of a layered medium. This 
leads to a change in the effective model, but the scheme for constructing it remains essentially unchanged. 
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